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The problem of convection onset in a system consisting of two infinite flat horizontal 
Iayers of flaid separated by a solid heat condactfng mass is examined. Critical values of 
the Raylefgh number defining the eqailibrfum stability in terma of the distance between 
layers, andof the Raid and solid mass thermal condactivity ratio is established. It is shown 
that the thermal fntuaction of layers via the heat conducting interlayer leads to a lower 
ing of stabilfty. 

1. We ahall consider two infinite flat layers of identical thickness A of a fluid sur- 
roanded by a solid heat-condacting mass. The distance between the two flaid layers inner 

boundaries is 2d (Ffg. 1). It is assumed that the physical 
parameters of the fluid filling the two layers are identical, 
and that the thermal conductivity of the solid interlayer 
and that of the eater boundary masses are eqaal. 

Under stabflized conditions the fluid velocity is 
zero, and the temperature gradients in each of the fluid 
layers, andin the solid mass are vertical and constant. 

In the equilibrium state the temperature gradients 

Fig. 1 
A in the flaid snd A, in the solid mass are bound by tbe 
vertical heat flux continuity condition 

where K and Km are the values of the fluid and solid mass thermal conductivity. 
Equations of small perturbations may be derived in the usual manner from convection 

equations with the perturbation monotony prfndpal taken into account. Selecting the fol- 
lowing units: for distance - the fluid layer thickness h, for velocity X/h (X is the fluid 
thermal diffasivfty), for temperature Ah, and for pressure pvx/h’ (p and v are respectively 
the flaid density and kinematic viscosity), we obtain the following dimensionless equations 
for the ststionary perturbations at the limit of stability: 

div 2) = 0, d’y 2- 
- t’tr AT,=0 f.l.3) 

Here u 10 the fhid velodty, T and T,,, are temperature perturbations of the fluid and 
solid mass respectively, p is the pressure pertarbatfon, and y ia a unit vector directed 
apwarda. The Rsylsigh number R l ppearfng in system (1.2), (1.3) is defined by the temper- 
ature gradient in the flufd, the layer thickness and the fluid parameters. 

Eliminating from system (1.2). (1.3) the pressure and the velocity horizontal 
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components, and assuming that the dependence of normal perturbations on horiaontal 
coordinates is expressed by axp i (k, x + kl y), we obtain equations for the amplitade of 
vertical velocity v (I), and of the amplitude of temperature perturbation 6 (I) and d,,,(r) 

VW - 2k’v” + k’v = kaRO (k* = kI2 + k,2) (1.4) 

8” _ k26 = _ v, 6,” - k20, = 0 (1.5) 

At the fluid-solid boundary all velodty components vanish, while the temperature and 
the heat flux are continuous. From this we derive the boundary conditions which mast be 
fulfilled at the inner and eater boandaries of the flaid layers 

v = v’ = 0, 8 = e,, he’ = O,,’ for Z = Zl, Z = Z2 (it = X / X,) (1.6) 

Here tI and I, are the inner and oater boundaries of the layers, and K and K,,, are the 

valaes of the thermal conductivity of fluid and solid. 
Temperature perturbations in the oater solids vanish at infinity 

8,-+ 0 for z-+ f oc (1.7) 

The boundary valoe problem (1.4) to (1.7) defines the critical Rayleigh nnmbers R, 
as well as the critical perturbations corresponding to these. 

Vertical velocity and temperature perturbationa, even with respect to I, obvioasly 
correspond to the basic instability level. Hence, when considering the latter, it will be 
sufficient to solve the problem in the area of I > 0 on the assumption that the temperature 
perturbation in the solid interlayer is an even function of z. 

2. An effective approximate solution determining the basic instability level may be 
obtain with the aid of the Galerkin method. For this we approximate the amplitnde of 
vertical velocity v (I) in conformity with boundary conditions (1.6) in the following manner 

Fig. 2 

v= c(z- z1)2 (z2 - q (2.1) 
Here c is a constant coefficient which by virtue 

of the problem homogeneity remains arbitrary, and in 
accordance with the normalixation condition is in the 
following assumed to be equal to nnity. 

The corresponding temperatore distribution 8 in 
the fluid, 8,, in the solid interlayer, and 8,,,, in the 
outer solid mass will be found by solving the thermal 
conductivity Eq. (1.5) for a given velocity distribn- 
tioa (2.1). 

Taking into account (1.7) the solution of the 
heat-conductivity equation for the outer solid mass 
is of the form 

8,, = Ae-kz (2 > z1) (2.2) 

Temperatare distribotion in the solid interlayer 
is defined by the even function 

8,, = B chkz (2 d ZI) (2.3) 

Solation of the thermal conductivity eqnation in the area of z1 < z < z2 yields the 
temperature distribation in the fluid layer 

0 = C, chku + C, shku + k-6 [k’uP (1 - u)2 + 2k2 (6~’ - 6u + 1) _t 241 
(u = z - zl) (2.4) 

Conatantm of integration A, B, C, , and C, are derived from the temperature and heat 
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flux continuity conditions at the inner (t = 1~1 and enter (z = 1, = I~ + 1) floid boandariaa. 

We ahall addnce conatanta C, and C, which define temperature pertnrbations in the fluid 
only 

C, = - 6-l ia (shk + J, cllk) thkz, + h (a + b shk) + x2b (1 + chk)] 

C, = - 6-l [a (1 - chlr) thkz, + h (b - ash/c) thkzl - bh (chk + hsh k)]; (2.5) 
6 = (shk + h chk) th kz, + h(chk + hsh k), a = 2k’ (12 + k2), b = 12k-5 

Snbatitating into the Navier-Stokes Eq. (1.4) the diatrihntion of velocity (2.1) and of 
temperatore (2.4). multiplying by function u (I) and integrating with respect to I from zI 
to xI, we obtain a relation from which the critical value of the Rayleigh number is found 

fs = 
f* = 
fs = 

RJfl+ hl2) th kzl+ A12 + A211 

(fs+ hid thh + hfc + ha/5 
(2.6) 

Eerc functions fi depend only on the wave number k 

fI = (504 + 24k2 + k4)ks, f2 = (504 + 24k2 + k’)kS cth k 

(504-12k2 + k4)k” + 5040 (12 + /c2) [6k - (12 + k2) thl/, k] 

(504-12k2 + k4)kS cth k + 2520 [12k (12 + k2) csch k - (144-12k2+ k4)] (2.7) 
(504-12k2 + k4 )k6 + 30240 k (6k cth k / 2 - (12 + kz)] 

Formula (2.6) defines the Rayleigh number critical valne in terms of three parameters, 
viz., the perturbation wave number k, the fluid and solid mass conductivity ratio h and the 
geometric parameter zI (22, is the solid interlayer thickness in units of the fluid layer 
thickneaa). 

3. The critical Rayleigh number which determines the convection onset in the limit 
case of a single horizontal fluid layer bounded at its lower and upper surfaces by solid 
masses of an arbitrary thermal conductivity may, first of all be derived tom the general 
Formula (2.6). This extension of the known Rayleigh problem to the case of solid bound- 
aries of arbitrary thermal conductivity was undertaken in papers [l and 21. 

In order to proceed with the case of a single layer it is necessary to pass in (2.6) to 
the limit zI + OQ , as in the presence of an infinitely thick interlayer any interaction between 
fluid layers is absent, and the two layers become independent. 

Assuming x1 +oa we obtain from (2.6) 

(h + cth W) /I 
R = Al5 + (21a-- !5th'/pk) 

Neutral cvrvem R (k) calculated from Formnla (3.1) for various values of the fluid and 
solid masa thermal conductivity ratios are shown on Fig. 2. The minimal critical number 
R, decreases with increasing h from the value R, = 1708 for h = 0 (a solid of infinitely 
great thermal conductivity) to the value R, = 720 for A = m (a nonheat-conducting solid). 
Theee limit values of R, practically coincide with the values derived in [2] from the exact 
characteriatical relationship. 

We shall now pasa to the consideration of results ensuing from the general Formula 
(2.6). 

For each fixed value of parameter zI defining the distance between the fluid layers, 
and a fired thermal conductivity ratio h we may plot with the aid of (2.6) a neutral curve 
R (k), and after minimization derive values of R,. 

The dependence of the minimal valoe of the critical nomber R on zI calculates by 
this method for neveral valaea of parameter x are shown on Fig. 3.?he whole family of 
carve0 lies between linea R, L: 1708 and R, = 720 which correspond to the limit cases 
of a solid maaa of infinitely great thermal condnctivity (A = 0) and of a nonconductive 
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Fig. 3 

407 

Fig. 4 

solid fh. = DO). In these limit cases the minimal 
critical Rayleigh number is evidently independent of 
the interlayer thickness. For any intermediate values 
of h the critical numbera R, increase with increasing 
aI, and with zI + 00 tend to their limit values depend- 
ing on h (as already noted these limit values coincide 
with the critical Rayleigh numbers for a single layer). 

It should be noted that with increasing zI the 
critical numbers R, very rapidly reach their limit 

values. Critical values corresponding to noninteracting layers are practically reached when 
x1 > 0.5, i.e. when the thickness of the solid interlayer equals that of the fluid layer. 

For a given X the critical wave number km increases slowly with increasing zI. Thus, 
for x = 1 at increasing zI from 0 to 00, km varies from 2.0 to 2.4. 

Thus, with increasing distance between layers (i.e. with a weakening of their thermal 
bond) the convection stability increases and the critical wavelength (the horizontal di- 
mension of the B’enard cell) decreases. We may note in connection with this that in the 

P 

roblem of convection stability of two vertical flat fluid layers, previously considered in 
31 the opposite takes place, namely a decrease of the Rayleigh number lower critical 

value occurs when the distance between layers is increased. This is explained by the 
presence of not only thermal interaction of fluid layers through the solid interlayer. but 
also by the hydrodynamic effects consequent to the flow of fluid from one vertical channel 
to another (due to this effect distant vertical fluid layers remain hydrodynamically bound). 

4. The problem considered above relates to the case of a solid interlayer having the 
same thermal conductivity as the outside solid masses. An extension to the case of dif- 
ferent thermal conductivities of the interlayer and of the outside solids results in an 
unwieldy formula for the critical Rayleigh number. We shall only adduce the results related 
to the case of arbitrary thermal conductivity of the interlayer and an infinitely great thermal 
conductivity of the outer solid masses (temperature perturbations at the fluid outer bound- 
aries disappear in this case). Retaining approximation (2.1) we obtain instead of (2.6) 

(4.1) 

Here x is now the fluid and interlayer thermal conductivity ratio, while functions fi 
are defined as previously by (2.7). 

The dependence of minimal R,(q) are shown on Fig. 4 for various values of X As in 
the previously considered case we have here an increasing stability with increasing dis- 
tance between layers. For x = 0 and x = 00 the critical Rayleigh numbers are independent 
of the distance between layers. All curves of this family originate for aI = fl at one point 
(Fig. 4) (the thermal conductivity of a zero thickness interlayer is immaterial). 

At the limit when x1 +oo we have the problem of stability of a single horizontal layer 
bounded on one side by a perfectly heat conducting solid mass, and on the other by a solid 
of an arbitrary thermal conductivity. (This problem was considered in [I] ). For aI + m we 



488 G.Z. Gershuni and E.M. Zhukhovitrkii 

obtain from Formula (4.1) 

fl + Ifa 

R = Is + A14 
(4.2) 

For A = m (one of the solids is perfectly heat-conducting, and the other nonheat- 
conducting) the minimal critical Rayleigh number is A, e 1304 which is very close to 
1296, the value found in [I]. 

Aothors wish to express their thanks to V. Ruaakov, N. Baiadina and D. Shvartsblat 
for their help in carrying out computations. 
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