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The problem of convection onset in a system consisting of two infinite flat horizontal
layers of {luid separated by a solid heat conducting mass is examined. Critical values of
the Rayleigh number defining the equilibriam stability in terms of the distance between
layers, andof the fluid and solid mass thermal conductivity ratio is established, It is shown
that the thermal interaction of layers via the heat conducting interlayer leads to & lower-
ing of stability.

1. We shall consider two infinite flat layers of identical thickness A of a fluid sur~
rounded by a solid heat-conducting mass. The distance between the two fluid layers inner
boundaries is 2d (Fig. 1). It is assumed that the physical
parameters of the fluid filling the two layers are identical,
and that the thermal conductivity of the solid interlayer
and that of the outer boundary masses are equal.

Under stabilized conditions the fluid velocity is
zero, and the temperature gradients in each of the fluid
layers, andin the solid mass are vertical and constant.

z

L, T 7. In the equilibrium state the temperature gradients
A in the fluid and 4, in the solid mass are bound by the
Fig. 1 vertical heat flax continuity condition
K A ey %mA m (1 .1)

where k and k,, are the values of the fluid and solid mass thermal conductivity.

Equations of small perturbations may be derived in the usual manner from convection
equations with the perturbation monotony principal taken into account. Selecting the fol-
lowing units: for distance — the fluid layer thickness A, for velocity X/h (X is the fluid
thermal diffusivity), for temperature 4k, and for pressure pvy/h? (p and v are respectively
the fluid density and kinematic viscosity), we obtain the following dimensionless equations
for the stationary pertutbations at the limit of stability:

, gB.AR8
VP = Avp - RT (R = 2
- RTY oy (1.2)
dive =0, AT = — ¢, AT =0 (1.3}

Here v is the fluid velocity, T and T, are temperature perturbations of the fluid and
solid mass respectively, p is the pressure perturbation, and y ia a unit vector directed
upwards. The Rayleigh number R sppearing in system (1.2), (1.3) is defined by the temper-
ature gradient in the fluid, the layer thickness and the fluid parameters.

Eliminating from system (1.2), (1.3) the pressure and the velocity horizontal
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components, and assuming that the dependence of normal perturbations on horizontal
coordinates is expressed by exp i (k, x + k,y), we obtain equations for the amplitude of
vertical velocity v (1), and of the amplitude of temperature perturbation § (1) and (9m(z)

VIV — 22" + kv = k2RO (k% = k2 + ky2) (1.4
0" — k20 = — 0" — k20, = 0 (1.5)

At the fluid-solid boundary all velocity components vanish, while the temperature and
the heat flux are continnous. From this we derive the boundary conditions which must be
fulfilled at the inner and oater boundaries of the fluid layers

v=v =0, 0=0, M =0, for z2=2,2=2 (*r=n/%m) (1.6

Here z, and 7, are the inner and outer boundaries of the layers, and x and K are the

values of the thermal conductivity of fluid and solid.
Temperature perturbations in the onter solids vanish at infinity

Om—>0 for z— 4 oo (1.7)

The boundary value problem (1.4) to (1.7) defines tha critical Rayleigh numbers R,
as well as the critical perturbations corresponding to these.

Vertical velocity and temperature perturbations, even with respect to z, obviously
correspond to the basic instability level, Hence, when considering the latter, it will be
sufficient to solve the problem in the area of > 0 on the assumption that the temperature
perturbation in the solid interlayer is an even function of 1.

2. An effective approximate solution determining the basic instability level may be
obtain with the aid of the Galerkin method. For this we approximate the amplitade of
vertical velocity v (2) in conformity with boundary conditions (1.6) in the following manner

4 / v=rc(z— 2;)? (22 — 2)? 2.1
. \ \ \ / Here ¢ is a constant coefficient which by virtue

\ \ \Q:y / of the problem homogeneity remains arbitrary, and in
\\ T/

accordance with the normalization condition is in the
K following assumed to be equal to unity.
\ \ N / / The corresponding temperatare distribution 6 in
7400 : 4 ] the fluid, eml in the solid interlayer, and §,,, in the
\ \ 7 outer solid mass will be found by solving the thermal
conductivity Eq. (1.5) for a given velocity distribu-

\_ 3 / tion (2.1).
/ Taking into account (1.7) the solution of the

a0 / heat-conductivity equation for the outer solid mass
A is of the form

1 6m2 = Ae7k? (z > 2,) (2.2)

Temperature distribution in the solid interlayer
is defined by the even function
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Fig. 2
Omy = B chkz (2 < z,) (2.3)

Solution of the thermal conductivity equation in the area of z;, <z 2, yields the
temperature distribation in the fluid layer

0 = C, chku + C, shku -+ k78 [k%u3 (1 — u)? + 2&% (6u? — 6u + 1) + 24]
(u=2z—z) (2.4)

Constants of integration 4, B, C,, and C, are derived from the temperature and heat
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flux continuity conditions at the inner (z = £,) and outer {z = 3, = 2, + 1) fluid boundaries.
We shall adduce constants C, and C, which define temperature perturbations in the fluid
only

€y = — 87 [a (shk + A chk) thkz, - A (a + b shk) + A5 (1 4 chk)]

Cy= — 871 {a (1 — chi) thkz, + A (b — ashk) thkz, — bA (chk - Ash )] (2.5)
6 = (shk 4 A chk) th kz; + A(chk -+ Ash k), a= 2k (12 4 Kk?), b= 12k5
Sabstituting into the Navier-Stokes Eq. (1.4) the distribution of velocity (2.1) and of

temperature (2.4), multiplying by function v (2) and integrating with respect to z from z,
to z,, we obtain a relation from which the critical value of the Rayleigh number is found

_ (it Ma)thka 4 Af2 + A%
T (fa+ AJg) thkzy + Ay + A2fs

R (2.6)

Here functions f; depend only on the wave number &
f = (504 -+ 24k2 4 k)ko, fo = (504 + 24k2 + KAE® cth k
fs = (504—12k2 - K5 + 5040 (12 + k?) [6k — (12 + k2) th Y/, k]
fo = (504—12k% -+ K%)k® cth k& + 2520 [12k (12 + k%) esch k — (144—12k2+ k%)) 2.7
fs = (504—12k% 4 k% )k | 30240 k[6k cth k /2 — (12 + k%))

Formula (2.6) defines the Rayleigh number critical value in terms of three parameters,
viz., the perturbation wave number k, the fluid and solid mass conductivity ratio A and the
geometric parameter z, (2z, is the solid interlayer thickness in units of the fluid layer
thickness).

3. The critical Rayleigh number which determines the convection onset in the limit
case of a single horizontal fluid layer bounded at its lower and upper surfaces by solid
masses of an arbitrary thermal conductivity may, first of all be derived from the general
Formula (2.6). This extension of the known Rayleigh problem to the case of solid bound-
aries of arbitrary themal conductivity was undertaken in papers [1 and 2].

In order to proceed with the case of a single layer it is necessary to pass in (2.6) to
the limit 2, + o0, as in the presence of an infinitely thick interlayer any interaction between
fluid layers is absent, and the two layers become independent.

Assuming 2, + o we obtain from (2.6)

(M =+ cthsk) £ o
R= g T Che i th k) 1)

Neutral carves R (k) calculated from Formula (3.1) for various values of the fluid and
solid mass themal conductivity ratios are shown on Fig. 2. The minimal critical number
R, decreases with increasing A from the value R, = 1708 for A =0 (a solid of infinitely
great thermal conductivity) to the value R, =720 for A = = (a nonheat-conducting solid).
These limit values of R, practically coincide with the values derived in (2] from the exact
characteristical relationship,

We shall now pass to the consideration of results ensuing from the general Formula
(2.6).

For each fixed value of parameter z, defining the distance between the fluid layers,
and a fixed thermal conductivity ratio A we may plot with the aid of (2.6) a neutral curve
R (k), and after minimization derive values of R..

The dependence of the minimal value of the critical number R on z, calculates by
this method for several values of parameter A are shown on Fig. 3™ The whole family of
curves lies between lines R, = 1708 and R, = 720 which correspond to the limit cases
of a solid mass of infinitely great thermal conductivity (A = 0) and of a nonconductive
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solid (A = c0). In these limit cases the minimal
critical Rayleigh number is evidently independent of
Azoe the interlayer thickness, For any intermediate values
of A the critical numbers R, increase with increasing
2., end with 2, + oo tend to their limit values depend-
] 4 ing on A (as already noted these limit values coincide
g 4.5 10 with the critical Rayleigh nambers for a single layer).
Fig. 3 It should be noted that with increasing z, the
critical numbers R, very rapidly reach their limit
values. Critical values corresponding to noninteracting”iayers are practically reached when
2, > 0.5, i.e. when the thickness of the solid interlayer equals that of the fluid layer.

For a given A the critical wave number k,, increases slowly with increasing z,. Thus,
for A=1 at increasing 2z, from 0 to oo, k,, varies from 2.0 to 2.4.

Thus, with increasing distance between layers (i.e. with a weakening of their thermal
bond) the convection stability increases and the critical wavelength (the horizontal di-
mension of the Bénard cell) decreases. We may note in connection with this that in the

roblem of convection stability of two vertical flat fluid layers, previously considered in
3] the opposite takes place, namely a decrease of the Rayleigh number lower critical
value occurs when the distance between layers is increased. This is explained by the
presence of not only thermal interaction of fluid layers through the solid interlayer, but
also by the hydrodynamic effects consequent to the flow of fluid from one vertical channel
to another (due to this effect distant vertical fluid layers remain hydrodynamically bound).

/
P

4. The problem considered above relates to the case of a solid interlayer having the
same thermal conductivity as the outside solid masses. An extension to the case of dif-
ferent thermal conductivities of the interlayer and of the outside solids results in an
unwieldy formula for the critical Rayleigh number. We shall only adduce the results related
to the case of arbitrary thermal conductivity of the interlayer and an infinitely great thermal
conductivity of the outer solid masses (temperature perturbations at the fluid outer bound-
aries disappear in this case). Retaining approximation (2.1) we obtain instead of (2.6)

f1th kzy 4 Afs

T Tisthkzi+ Ale (4.1)

Here A is now the fluid and interlayer thermal conductivity ratio, while functions f;
are defined as previously by (2.7).

The dependence of minimal R, (z,) are shown on Fig. 4 for various values of A. As in
the previously considered case we have here an increasing stability with increasing dis-
tance between layers. For A = 0 and A = o the critical Rayleigh numbers are independent
of the distance between layers. All curves of this family originate for 2z, = 0 at one point
(Fig. 4) (the thermal conductivity of a zero thickness interlayer is immaterial).

At the limit when 2z, » 0 we have the problem of stability of a single horizontal layer
boaunded on one side by a perfectly heat conducting solid mass, and on the other by a solid
of an arbitrary themal conductivity. (This problem was considered in [1]). For z, -+ o we
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obtain from Formula (4.1)

i+ Afs
RATE v *-2)

For A = oo (one of the solids is perfectly heat-conducting, and the other nonheat-
conducting) the minimal critical Rayleigh number is R, = 1304 which is very close to
1296, the value found in [1].

Authors wish to express their thanks to V. Rusakov, N. Baiadina and D. Shvartsblat
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